Sea ice and snow cover characteristics during the winter-spr
Details of Research
TitleSea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen Sea: An overview of SIMBA 2007AbstractThe Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6. m (0.1. m) to 2.3. m (0.7. m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of 0.6. m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea. © 2010 Elsevier Ltd.Funding DetailsR9731, SWRI, Southwest Research Institute; SD/CA/03A; NSF, National Science Foundation; UTSA, University of Texas at San Antonio; FRIA, Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture; 2.4649.07, FNR, Fonds National de la Recherche Luxembourg; ANT 0703682, NSF, National Science Foundation
Details
1st AuthorLewis, M. AuthorLewis, M.Tison, J.Weissling, B.Delille, B.Ackley, S.Brabant, F.Xie, H.Year2011JournalDeep-Sea Research Part II: Topical Studies in OceanographyVolume58Number10-SepPages1019-1038DOI10.1016/j.dsr2.2010.10.027URLhttps://www.scopus.com/inward/recor.....dc2990e83d6f8b46d8612504aKeywordsAntarctic sea iceAntarcticaBellingshausen SeaIce-ocean interactionsInternational Polar Year (IPY)Sea ice propertiesSnow properties, Chemical propertiesHeat fluxOceanographyRemote sensingSea ice, Snow, air-ice interactionheat fluxice breakupice coreice-ocean interactionmass balanceremote sensingsea icesnow accumulationsnow coverthermodynamics, Bellingshausen SeaSouthern Ocean, BelgicaAuthor KeywordsAir-ice-ocean interactionAntarctic sea iceAntarcticaBellingshausen SeaInternational Polar Year (IPY)Sea ice propertiesSea ice thermodynamicsSnow properties
Other
CitationLewis, M., Tison, J., Weissling, B., Delille, B., Ackley, S., Brabant, F. and Xie, H. (2011). Sea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen Sea: An overview of SIMBA 2007. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(9-10):1019-1038
Xie, H., Sea ice and snow cover characteristics during the winter-spr . Antarctica NZ, accessed 08/09/2024, https://adam.antarcticanz.govt.nz/nodes/view/64268, 10.1016/j.dsr2.2010.10.027